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Abstract 

Let R be an integral domain. In this paper, we introduce a sequence of factorization properties 
which are weaker than the classical UFD criteria. We give several examples of atomic nonfac- 
torial monoids which satisfy these conditions, but show for several classes of integral domains 
of arithmetical interest that these factorization properties force unique factorization. In particular, 
we show that if R satisfies any of our properties and is a Krull domain with finite divisor class 
group, a nonmaximal order in an algebraic number field, or a generalized Cohen-Kaplansky 
domain, then R in fact must be factorial. @ 1998 Elsevier Science B.V. All rights reserved. 
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1. Introduction 

Throughout this paper, a monoid H is assumed to be commutative and cancellative. 

We write H multiplicatively and denote by 1 E H its identity element and by H x 

its group of invertible elements. H is called reduced if Hx = { 1 }. We use the basic 

notions of divisibility theory as in [12, Section 61. By passing from H to H/H’, we 

may assume that H is reduced whenever this is convenient. The irreducible elements 

of H are called atoms and H is called atomic if every a E H\Hx is a product of 
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atoms. Much recent literature has been devoted to the study of factorization properties 

of monoids (see, e.g., [IO, 13, 151). Such studies take on added significance since they 

have immediate applications to ring theory. For an integral domain R, we denote by 

R’ = R\(O) its multiplicative monoid of nonzero elements, and describe the factoriza- 

tion properties of R by means of the monoid R’. In particular, we say that R has some 

factorization property P (e.g., being atomic or factorial) if R* has property P. 

If a monoid H is atomic but not factorial, then the factorization of a nonunit of H 

into atoms is usually not unique. Several notions and arithmetical measures describing 

the degree of nonuniqueness of factorizations have been introduced in the literature, 

mainly for Dedekind domains (see [5] for a summary). 

In this paper, we introduce a sequence of factorization properties which are weaker 

than unique factorization. We give simple examples of atomic nonfactorial monoids 

having these factorization properties, but are unaware of similar examples for integral 

domains. On the contrary, for large classes of domains of arithmetical interest, we 

show that our factorization properties already force unique factorization. 

2. Definitions and examples 

We motivate our work with a proposition. 

Proposition 2.1. For cc nutural number n und atomic monoid H, the follo~rky stute- 

ments ure equivulent: 

(1) IJ’UI,..., a,, bl, . . ,bt are not necessarily distinct atoms with aI . a,, = hl br, 

then n = 1 and after reordering, ui and bi are associates. 

(2) If al,. . . , a,,,, bl, . , bt ure not necessarily distinct atoms \there 1 < m 5 n tr>ith 

al...a,,,=bl.’ bt, then m = I and after reordering, a, and b, are associutes. 

(3) If b, al,. . ,a, are not necessarily distinct atoms of H and bJal a,,, then b is 

associated to ai jar some i. 

(4) If I 2 m 5 n and b, al,. . .a, are not necessarily distinct atoms of H \rith 

b/al a,,,, then b is ussociuted to ai ,for some i. 

(5) !f’l < i 5 m < n undbl,..., hi, al,. . , a, ure not necessarily distinct atoms oj’H 

,l+th bl . bi[al a,, then, uftes reordering, b, and ai ure associates for j = 1,. , i. 

Proof. Clearly we have (5)*(4)+(3) and (2)+( 1). 

(3) + (2): Suppose that ui . a, = bl . bt. Now 61 Jai . . u~u~~~, so bl Ju, for some 

i. After reordering, we can take i = 1 and since ni and bl are atoms, they are associates. 

Cancelling ui from both sides, we get a2 a,,, = ibz . bt for some unit 2. Continuing 

in this manner, we obtain m = I and after reordering a, and bi are associates. 

(l)=+(5): Suppose b, . ..b.la, .“a,,,; so bl ...bjcl ‘..c,V==al . ..a. for some atoms 

ci ,..., c,. Then 61 . ..b.cl ...c~~~,~~=uI . ..u.,,ak-;-“. Thus, i+s+n-m=n so i+s=m. 

After reordering we get b, and ai are associates for j = 1,. . . , i (and also ci and a, for 

j=i + l,...,s). El 



Definition. An atomic monoid satisfying any of the five equivalent conditions of 

Proposition 2.1 is said to be nffacrovial. 

By slighty weakening condition (1 ), we obtain a condition of some further interest, 

(l*)Ifu, 3.. . .G,hl , . . . , h, are not necessarily distinct atoms with al . . . a,, = hl . . . h,,, 

then, after reordering, aj and bi are associates. 

Definition. An atomic monoid H satisfying (1* ) is called quasi-u-jhctorial. 

We also consider a third condition 

Definition. An atomic monoid H is called square-factorial if whenever u, c and IC are 

irreducible elements of H with U* = c’u’ then u and u are associates. 

An atomic integral domain R is called n-factorial, quasi-n-factorial or square-factorial 

if its corresponding monoid R’ has these properties. 

It was proved in 1131 that if the ring of integers of an algebraic number field is 

square-factorial, then it is already factorial. In this paper we shall extend this property 

to a large class of domains. We open with some simple consequences of our definitions. 

Remark 2.2. Let H be an atomic monoid. 

(1) H is l-factorial. 

(2) If H is n-factorial, then H is quasi-n-factorial. 

(3) H is factorial if and only if H is n-factorial for a11 it > 1. 

(4) If W is (quasi-)(n + 1)-factorial then H is (quasi-)n-factorial. This follows im- 

mediately from Proposition 2.1. 

(5) If H is quasi-2-factorial, then H is square-factorial. 

Example 2.3. For n E N, n > 2, the additive monoid H = (n,rt + 1) c No is (n ~ I )- 

factorial, but not n-factorial, and is quasi-k-factorial for all k E N. 

Proof, In order to prove that H is (n - 1 )-factorial, suppose that there is an equation 

of the form 

an + b(n + 1) = a’n + b’(n + 1 ), 

where a,h,a’, h’ E No and a + b = n - 1. We must prove that a= a’ and b = b’. Since 

b E b’ (mod n) and b < n, we have b’ = b + b”n for some b” E No, and 

a = a’ + h” t b”n 

follows. From u -C n we conclude that 6” = 0, and u = a’ follows. 

The equation n(n + 1) = (n + 1 )n shows that H is not n-factorial. 

In order to prove that H is quasi-k-factorial for k E fV, observe that, for all a, a’ E { 0, 

1,. . _ k}, an + (k ~ a)(n + 1) = a’n + (k - a’)(n + 1) implies a = a’. 0 
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Example 2.4. Let m > k > 1 be natural numbers and n = (k + 1)m. Then the additive 

monoid H = (n, n + 1, n + k + 1) c No is k-factorial but not quasi-(k + 1 )-factorial. 

Proof. In order to prove that H is k-factorial, assume that there is an equation of the 

form 

an + b(n + 1) + c(n + k + 1) = a’n + b’(n + I) + c’(n + k + l), 

where a, b, ~,a’, b’, c’ E No and a + b + c = k. This implies b s b’(mod(k + 1)) and 

hence 6’ = b + (k + 1 )b” with b” E NJ, since b 5 k. Inserting this, dividing by (k + 1) 

and putting a = k - b ~ c, yields 

km+c=a’m+bm+(k+ l)mb”+b”+c’(m+ 1). 

Since km + c < km + m = (k + l)m, it follows that b” = 0, c’ 5 k and c = c’ (modm), 

which implies c = c’. Finally k = a’ + b + c’ implies a = a’. 

The equation (k + l)(n + 1) = kn + (n + k + 1) shows that H is not quasi-(k + l)- 

factorial. 0 

Our next two examples involve block monoids, which 

later in the study of Krull monoids. Let us recall the 

we denote by 9(P) the free abelian monoid with basis 

form 

will also be of importance 

definition. For any set P, 

P. Its elements are of the 

where c,(S) are nonnegative integers, almost all equal to zero. If G is an additive 

abelian group and Go is a subset of G, then we call 

B(G,,)= BEF(G~) c v,(B)y=0~G 
c/ E Go 

the block semiyroup over Go. The elements of 9#(Ga) are called blocks 

Example 2.5. Denote by C, the cyclic group of order II (written additively), and write 

C,, = (0, 1, . . . , n - 1). It is easily verified that the block semigroups .%(CI @? C2) and 

AY( Cj) are quasi-2-factorial, but not 2-factorial. 

Let n 2 2 be a positive integer. We construct a n-factorial monoid which is not 

factorial. Let G = C:=, C,1+3 and 

Go={(l,O ,..., O),(O,l,O ,..., 0) )...) (0 )...) O,l),(n+2,n+2 )...) nf2)). 

By an argument similar to that used in [6, Example 71, @Go) is n-factorial but not 

(n + 1 )-factorial. 
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Now, let k and j be positive integers with k > 1 and j > 2. By the argument pre- 

sented in [7, Example 4.141, G = Zk with 

Gs={(l,l,..., l),(-1,O ,..., 0) ,..., (0 ,..., Ot-1) 

(j,O ,..., 0) ,..., (0, . . . . O,j>,(-j,-j,...,-j)) 

yields a block semigroup a(Go) which is min{k,j}-factorial. 

3. Krull monoids and Krull domains 

We start with a simple but useful lemma whose proof is obvious. 

Lemma 3.1. Let ,f : H + D be cc homomorphism of reduced atomic monoids. 

(i) Suppose that f is injective and, for every atom u of H, f(u) is an atom of D. 

If D is n-jtictorial (resp. quasi-n-factorial or square-factorial), then so is H. 

(ii) Suppose that ,f is surjective and has the following property: If x E H and 

a, h E D are such that f(x) = ab, then there exist u, v E H sutisfyiny x = uv, f(u) = CI 

und f(v) = b. If H is n-factorial (resp. quasi-n-fbctoriul or squure-factoriul), then so 

is D. 

For Krull monoids, we refer the reader to [8, 121 or [16]. By [8], every Krull monoid 

H splits in the form H = Ho x Hx where Ho is a submonoid of a free abelian monoid 

with basis P, Ho c <F(P), such that the following two conditions hold: 

1. If a, b E HO and alb in P(P), then alb E HO. 

2. Every a E 9(P) is a greatest common divisor of finitely many elements of H. 

Up to isomorphism, 9(P) is uniquely determined by H. The elements of P are 

called primes of H. The factor group G = .F(P)/Ho is called the divisor cluss group 

of H. It is written additively, and for a E 9(P), [a] E G denotes the class containing 

a. The submonoid Ho = H/H’ is a reduced Km11 monoid, and H is reduced if and 

only if H =Ho. 

If Go is a subset of any abelian group G, then the block semigroup @(GO) introduced 

in Section 1 is a Krull monoid (see [lo] for a discussion of the arithmetic of block 

semigroups). 

If H is a Krull monoid as above with class group G, and Go = {[p] 1 p E P} c G de- 

notes the set of all classes containing primes, then the block homomorphism 

B : HO + 28( Go) defined by 

B(Pl Pn) = [PI I. . [Pnl, 

where ~1,. . , pn E P satisfies the assumptions of Lemma 3.1 (ii). Therefore, we obtain 

the following Corollary. 



Corollary 3.2. Let H he u Krull monoid ,rith cluss group G, let Go he the set oj 

classes containimg primes, and &?(Go) he the block monoid. If H is n-fuctorial (resp. 

quasi-n-j&torial or squure7ftictoriul), then so is .&Go). 

An integral domain R is a Krull domain if and only if R* is a Krull monoid (see 

[16]), and in this case the set of primes may be identified with the set of height 

one prime ideals of R. An arbitrary Krull monoid H need not satisfy the weak ap- 

proximation theorem (and hence it is not of the form H = R* for a Krull domain R). 

Concerning the distribution of primes in the ideal classes of a Kr~~ll monoid, we have 

the following result. 

Lemma 3.3. Let H he a Krull monoid, P its set ef primes und G its cluss group. 

For a subset M c G M’e denote hi 

(M) = {Sl + . . .+c/I~,~EM}cG 

the submonoid of G generated bl, M. 

(i) For every po E P, ule have G = ({[p] 1 p E P\{ pO}}). 

(ii) If R is u Krull domain und H = R’, then we huce, ,f?w ezjery ,jinite subset E c P, 

G= ({[PI I PEP\W) 

Proof. See [17]. Observe that (in the notation above) 

is a divisor theory with class group G. 0 

Theorem 3.4. Let H be u Krull monoid with class group G. 

(i) IJ’there exists u nontrivial cluss qf,finite order containing ut least two primes, 

then H is not square-jbctoriul. 

(ii) If eaery class containing primes contains at least two primes, then H is not 

quasi-2-factorial. 

(iii) If IG/ > 3, G # Cl $ Cz, ctnd every nontrivial class contains at least one prime, 

then H is not quasi-2Yfuctorial. 

Proof. (i) and (ii) As above, we may assume that H = HO x Hx and Ho c ,p(P), where 

P is the set of primes of H. Suppose that g E G\(O) contains two distinct primes, pl 

and ~2. 

If g is of finite order IZ > 2, then u = p;-’ ~2, 2: = p; and w = p;-‘pz are distinct 

atoms satisfying u2 = 1)~. 

Assume now that g has infinite order. By Lemma 3.3(i), there exist classes ~1,. . g,\ 

E G containing primes such that -g = gl + t -t g\-. We may assume that s E N is 

minimal with this property and that y1 # g. For 1 < i < s select primes qi E g; n P, 

and q: E g1 n P such that q’, # q1 (this is possible since each of these classes contain at 
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least two primes). Setting u=(plq1q2...qs), u=(p2qiq2...qs), w=(plq’,q2...q,T) 

and z = (pzqjqz qy) yields that uv = wz in H. Now, u is not an associate of NJ 

since q{ # q1 and u is not an associate of z since pl # ~2. Hence, H is not quasi-2- 

factorial. 

(iii) By Corollary 3.2, it is sufficient to prove that AI(G) is not quasi-2-factorial. We 

consider three cases. 

Case 1: 2G = 0. Since jGI > 3 and G # C2 $ Cz, there exist three independent ele- 

ments ~,h, k E G of order 2, and the relation 

[(g + h)(g + k)(h + k)l [(g + h + k)ghk] 

= [(g + hIghI . [(g + k)(h + k)(g + h + k)k] 

yields the assertion. 

Case 2: 3G = 0. Since /GI > 3, there exist two independent elements g,h E G of 

order 3, and the relation 

MY + h)(g + 2h)l [GQ)(Y + h)(2h)l= M&7)1 [(Y + N2(Y + 2h)Ph)l 

yields the assertion. 

Case 3: There exists some g E G such that ord(g) > 3. In this case, the relation 

M2YE3Y)l [Y2F&7>l = k&3Y)l [c&I)(-&7)1 

yields the assertion. [7 

Corollary 3.5. Let R be a Krull domain with nontrivial class group G. 

(i) [f some nontrivial class of G of jinite order contains at least two primes, then 

R is not square-fclctorial. 

(ii) If every nontrivial class of G contains ut least one prime, then R is not quasi- 

27factoriul. 

Proof. The proof of (i) follows directly from Theorem 3.4(i). For (ii), if IGI > 4 then 

the result follows directly from Theorem 3.4(iii). If IG/ < 4 then some nontrivial class 

contains infinitely primes and the result follows from part i). 0 

For the n-factorial property, we can prove a slightly different version of the last 

theorem. 

Theorem 3.6. Let H be a Krull monoid with class group G, n E N and nG = 0. [f’ H 

is n-jtictoriul, then it is already Jhctoriul. 

Proof. It is sufficient to prove that every atom of H is primary. For then H is weakly 

factorial, and the assertion follows from [15, Corollary 2.91. We may assume that H 

is reduced and H c F(P). Let a E H be an atom and let p E P be a prime dividing a. 
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If d is the order of [p] in G, then d 1 rz, pd is a primary atom in H and pd 1 a”. 

Proposition 2.1(3) now implies that a = p”. 0 

Next we consider Krull domains with infinite cyclic ideal class group. 

Theorem 3.7. Let R be a Krull domain bcith class group G isomorphic to Z. Let g 

he a generator of G and Go the set oj all nonzero classes of G containing prinzes. 

(i) If Go = (9, -g} then R 1s squarelfactorial but not quasi-2-jhctoriul. 

(ii) If’ Ga # (9, -g} then R is not square-j~ctoriul. 

Proof. As above, we assume that R’ = Ho x RX and Ho c F(P), where P is the set 

of primes. 

(i) By Lemma 3.3, .g n P and (-y)n P are both infinite. The irreducible ele- 

ments of R which are not prime are precisely the elements pq, where p E g n P and 

qE(-_y)nP. If(pq)2=(plql)(P2q2), where ~,~1,~2~gnPandq,ql,q2~(-g)nP, 
then p = p1 = p2 and q = q1 = q2. Therefore R is square-factorial. In order to prove 

that R is not quasi-2-factorial, let ~1, p2 E g n P and ql,q2 E (-g) n P be distinct and 

consider the relation (piqi )(pIq2) = (piq2)(p2qi ). 
(ii) First we assert that it is sufficient to consider the following two cases: 

(A) There exist m, n E N such that n > 2, ng E Go, and (-my) n P is infinite. 

(B) There exists some n E N such that n > 2, ng E Go, and the set {m E N 1 (-m)g E 

Go, m $ 0 (mod n)} is infinite. 

Indeed, if Go # {g, -g}, then by Lemma 3.3 there exists some n E N, n > 2, such that 

either ng E Go or (-n)g E Go. Interchanging g and -g if necessary, we may assume 

that ng E Go. If there exists some m E N such that (-m)g n P is infinite, then we are 

in case (A). Therefore, we assume that (-m)g n P is finite for all m E N. If the set 

M={mENl(-m)gEG 0, m $ 0 (modn)} is infinite, then we are in case (B). If M 

is finite, then Lemma 3.3 implies that the set {m E N 1 (-m)g E Go, m s 0 (modn)} is 

infinite, and that there are infinitely many primes in classes mg, where m $ 0 (modn). 

Let k E N be such that (-kn)g E Go, and distinguish two cases. 

Case 1: ml g n P is infinite for some ml E N. Interchanging g and (-g), we see that 

(A) holds with (kn,ml) instead of (n,m). 

Case 2: The set {n E W / mg t Go, m $ 0 (modn)} is infinite. Interchanging g and 

-9, we see that (B) holds with kn instead of n. 

Now we prove that R is not square-factorial under either of the assumptions (A) or 

(B). 
(A) Let pi, ~2, pk E (-m)g n P be distinct and p E ng. Then the relation 

shows that R is not square-factorial. 

(B) Let ml. m2 E N be distinct such that (-ml )g E Go, (-m2)g E Go and ml E m2 $ 0 

(modn). Let t E N be minimal such that tm, = 0 (modn), and let k, 1 E N be such 

that (t - 1)mi + m2 = nk and tml =nl. Then t 2 2, 2k > 1, and if pl E (-ml)g fl P, 
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p2 E ( -mz)g n P, q E ng n P, then the relation 

(P;-‘P2h2 = (Pf4’)(P(-2P;92k-‘) 

213 

shows that R is not quasi-2-factorial. 0 

Theorem 3.8. Let H be a Krull monoid, G its class group, g E G and n E N such 

that 2 5 n 5 ord(g) < 0~). Suppose that each of the classes jg (1 < j < ord(g)) 

contains at least n + 1 distinct primes. Then there exist pairwise nonassociated atoms 

UO>UI>..., ~1, E H such that ~“0 = IA, . . . . . u,. 

Proof. Exactly as in the special case which is in [l 3, Theorem I I. q 

4. Finitely primary monoids and one-dimensional domains 

A monoid T is called finitely primary of rank s E N and of‘ exponent c( E N, if it 

is a submonoid of a factorial monoid F containing exactly s mutually nonassociated 

prime elements m,. , ps, 

TcF = (PI,...,P.~) x FX, 

satisfying the following conditions: 

1. TX = TnFX. 

2. For any a = pr’ . . . p,“>u E F (where CI~,...,C(,~ E NO and u E FX) the following 

two assertions hold true: 

(a) If a6 T\Tx, then at > 1,. , x,$ > 1. 

(b) If x1 2 x,..., c[, 2 LY, then aE T. 

In the following, we use the terminology of [15, Section 41. For another characterization 

of finitely primary monoids see [9, Theorem 11. 

Theorem 4.1. Let T be u jinitely primary monoid ?f runk s und exponent (x, and 

suppose that T is not factorial. 

(i) Ifs > 2, then T is not s-j&torial and not (2x)Tfactorial. 

(ii) If s = M = 1, then T is not square-factorial. 

(iii) I_f s = 1 and a 2 2, then T is not a-factorial. 

Proof. (i) For each 1 < i 5 s notice that 

a, = (PI ... P~)“P: 

is an atom of T. Hence 

at . .a, = (p,“. p,f).‘+‘, 

showing that T is not s-factorial. 



In order to prove that T is not (2cc)-factorial, choose any N > 2x and consider the 

element 

a = (p, . p,y+‘)~ = [pl”(pz ‘. p.,)~v"l[Pp(P2 ” P,YYl. 

Each factor on the right-hand side has a factorization into at most M factors, so a has a 

factorization into at most 2a factors. The left-hand side shows that a has a factorization 

into at least N + 1 > 2~ factors. 

(ii), (iii) Set p = p’, and let 1 < c < x be minimal such that p’c E T for some 

EEFX. 

Cuse 1: c = x = 1. Since T is not factorial, there exist some q E F x \Tx The 

elements p’,p’q and p’q-’ are nonassociated atoms of T, and the relation (p”)’ = 

(p"q)(p"v-' ) shows that T is not square-factorial. 

Case 2: c=a > 2. Here the relation (p”)‘+’ = (p’+’ )” shows that T is not x-factorial, 

since p’ and pa+’ are atoms. 

Case 3: c < z. Note that this case can only occur for M > 1. Since p’c is an atom 

of T, the relation (p’c)” = (p”)“-‘( p’f) shows that T is not %-factorial. 0 

Theorem 4.2. Let R be u one-dimensional quasilocul domain such that the complete 

integral closure I? qf’ R is a semilocal principal ideul domain, d # R and [R : I?] # 0. 

Then R is not square-jbctoriul. 

Proof. By [9, Theorem 21, the multiplicative monoid R’ is finitely primary of rank 

s = 1 max (R) 1 and 

k’ = (PI,.. .) ps) x P. 

where PI,..., p, is a system of nonassociated primes of R. The conductor [R : k] is 

of the form 

[R : I?] = p;’ pz”’ p,;‘k, 

wherex’,...,~,~~N(thenR\{O}isofexponentmax(~’,...,a,)).Wesetp=p’,x=a’ 

and consider several cases. 

Case 1: s = r = 1. See Theorem 4.1. 

Cuse 2: s = 1, SI > 2. Let 1 5 c < c( be minimal such that u = pc~ E R for some 

EE?. 

Case 2A: c = M. Since v = 1 + p E I?” \RX, the elements pa, p”q and p”tlP’ are 

nonassociated atoms of R, and (p”)’ = (p”q)( p”qP’ ). 

Case 2B: c < 8. Since p’-‘d @R, there exists some R ER such that 1:-‘0p”~” @ R, 

and consequently q = 1 + I-:-’ 0~‘~ E k” \RX . Therefore, 

and 

w = uq-’ = u+(-t)q-‘)P’ER 
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are atoms of R, which are not associated to u. Since u2 = VW, the assertion follows. 

Case 3: s > 2. We set q = p;? . . . p,z$. 

CUSP 3A: For all fl > 1, if pfiq lies in R, then it is an atom of R. Then 

plq, pxt143 P”t29 

are nonassociated atoms of R satisfying 

(P”+‘9)2 = (P”q)(P”+29). 

Case 3B: There exists some fl > 1 such that pBq is a reducible element of R. An 

atom a of R dividing pbq is of the form 

a=p’pF.. P,‘E, 

where 7 2 I,1 < _ yi < pi for ,j = 2,. . . ,s and e~l?~. Now, let ME R be an atom of the 

form 

u = p;‘qo, 

where 7 > 1,qa = pi’...p”e~l?,l 5 yi < z,i, E E kx and assume that there is no atom 

li in R properly dividing u in l?. We set q1 = p:-:” p,:‘-;“c-’ EI? and q = qOq,, 

Since p’qll? @R, there exists some Q E /? such that Hp’q, # R, and consequently 

ye = 1 + fIp’ql EI?~\R~. Therefore 

and 

are atoms of R which are not associated to U. Since u2 = UW. the assertion follows. 111 

In order to globalize Theorem 4.2, we need some additional technical tools which 

we formulate in the language of monoids. 

Lemma 4.3. Let (Hi)iEn be a family of monoids and H = u,,, H;,. If’H is n;fl?-ctorinl 

(resp. quasi-n:fktorial or square-factorial), then so are all H;,. 

Proof. We may assume that all HA are reduced. Then we apply Lemma 3.1(i) to the 

natural injections Hi. --i H. 0 

Recall that an integral domain R is weakly Km11 if and only if every proper principal 

ideal of R has a (finite) primary decomposition where all the associated primes have 

height 1. If R is weakly Krull, we denote by X’(R) the set of prime ideals of height 1 

of R and by C&(R) the t-class group of R (see [3, 141). 
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Corollary 4.4. Let R he a tveakly Krull domain lvith Cl,(R) = 0. If R is r+ctor’iaE 

(resp. quusi-n-jactorial or square_Jhctoriul), then so are all RP fur p EX’ (R). 

Proof. Since Cl,(R) = 0, we have an isomorphism of monoids 

R# + R,d, 
LI 

pEX’(R) 

where R# = (R’)/RX is the associated reduced monoid of the multiplicative monoid 

of R (see the main result of [4]). Now the assertion follows from Corollary 3.1 (ii). 

0 

Theorem 4.5. Let R be a one-dimensional noetheriun domain such that Pit(R) = 0, 

the integral closure R of’ R is u jnitely generated R-module and R # R. Then R is 

not square-factorial. 

Proof. Since R is weakly Krull, C&(R)=Pic(R)=O, and Corollary 4.4 applies. There- 

fore it is sufficient to prove that RP is not square-factorial for some p E max(R). 

Since there exists some p E max(R) such that l?!, f R,, the assertion follows from 

Theorem 4.2. Cl 

An atomic integral domain R is called a Cohen-Kuplansky domain ((X-domain) 

if it has finitely many nonassociated irreducible elements, and a generulized Cohen- 

Kuplunsky domain (generalized CK-domain) if it has finitely many nonassociated 

irreducible elements which are not prime. 

Theorem 4.6. Let R be a generalized CK-domain ivhich is not Juctorial. Then R is 

not square-j& toriul. 

Proof. By [ 1, Theorem 4] or [14, Lemma 4.111, R is weakly JSrull and C/,(R) = 0. 

Thus, by Corollary 4.4, it suffices to prove that RP is not quasi-2-factorial for at least 

one p EX’(R). By [1, Theorem 61, the integral closure I? of R is factorial. Therefore 

we have R # R and hence RP # Rp for some peX’(R). Since RP is a W-domain, its 

integral closure RP IS a DVR and [Rp 
-. 

: RP] # 0 by (2, Theorem 2.41. Therefore R, IS the 

complete integral closure of RP, and Theorem 4.2 shows that Rp is not square-factorial. 

q 

Theorem 4.7. Let R be a nonmaximal order in an algebraic number jield. Then R is 

not square-factorial. 

Proof. If Pit(R) = 0, the assertion follows from Theorem 4.5. Thus we suppose that 

Pit(R) # 0. Let f be the conductor of R, and 
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It follows from [ 11, Section 31 that H is a Krull monoid with finite class group 

Pit(R), and every class of H contains infinitely many primes. Therefore H is not 

square-factorial by Theorem 3.4(i), and Lemma 3.l(ii), applied to H q R\(O), com- 

pletes the proof. n 

Remark. Theorem 4.7 continues to hold for orders in homomorphy rings of global 

fields as considered in [I 11. 

We close with three results concerning polynomial and power series rings. 

Theorem 4.8. Let R be an integral domain. Then R[X] is 2-jktorial if and only ij R 

(and hence R[X]) is factorial. 

Proof. Suppose that R[X] is 2-factorial. Let a E R be an atom. We show that a is 

prime. This proves that R (and hence R[X]) is factorial. Suppose that albc (where 

b,c E R - {0}), but at b and a ic. Then UX + b and uX + c are atoms in R[X]. Now 

albc gives that a divides the coefficients of (uX + b)(aX + c), so (ax + b)(uX + 

c) = u.f for some f E R[X]. But then factoring f into irreducibles gives a different 

factorization of (ax + b)(uX + c), contradicting the hypothesis that R[X] is 2-factorial. 

Remark. If we assume in Theorem 4.8 that R is integrally closed, then R[X] 2-factorial 

can be replaced by R[X] quasi-2-factorial. To see this, we show that in the factorization 

(uX + b)(uX + c) = uf, ,f’ must be irreducible. First, assume that al f in R[X]. Then 

X2 + [(b + c)/a&Y + (bc/u2) E R[X] gives that -b/a and -c/a are integral over R, a 

contradiction. Hence, suppose that f = uX2 + (b + c)X + be/u has a manic linear factor. 

Then this factor must be either X + b/u or X + c/u, neither of which is in R[X] since 

aib and sic. 

Theorem 4.9. Let K c L be integral domains such that Kx # Lx. Then R = K +XL[X] 

is not square-factorial. 

Proof. For the proof, take E E Lx \Kx , and consider the equation X2 = (crX)(x-‘X). 

Since X and xX, as well as X and x-‘X, are nonassociated atoms of R, the assertion 

follows. n 

Theorem 4.10. Let R be an atomic integral domain. Then R[[X]] quasi-2-Jhctoriai 

implies that R is ,firctorial. 

Proof. In the proof of Theorem 4.8, replace the terms UX + b and aX + c by a + bX 

and a + CA’. Then a + bX and a + CX are atoms in R[[X]] and (a + bX)(u + cX) = 

a2 + u(b + c)X + bcX2 = u(u + (b + c)x + (bc/u)X2) are two distinct factorizations of 

(a + bX)(u + cX) into two atoms. 0 
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